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1 Introduction

The basic idea of the registration approach presented in [2] is to calculate for
each point in range image 1 the rotation and translation to each point in range
image 2 with the help of their local frames! and to store the resulting transforma-
tion parameters (a, B, Y, ty, ty, t;) in asix dimensional Hough table by incrementing
a counter in the table at position (a,B,y,tx,ty,t;). Since transformations calcu-
lated from correct point correspondences result in the same transformation while
all other transformations are distributed more or less randomly in the parameter
space, apeak is expected in the Hough table at the position of the searched trans-
formation.

Since the number of Hough table cellsis limited due to limited memory re-
sources, each Hough table cell hasonly alimited resolution (Aa, AB, Ay, Aty, Aty, At,)
that is connected to the size of the initial parameter domain. This Hough table cell
resolution is far beyond the desired accuracy of the transformation determination
when no or only little? a priori knowledge is given for the initial parameter do-
main. The solution to this problem is to start with a rough resolution for each
Hough table cell, detect the Hough peak so that the parameter domain can be re-
stricted to the neighborhood of the peak, and then iterate the procedure by choos-
ing each time a higher resolution for the Hough table cells.

There are some practical problems in determining the neighborhood of the
transformation that correspondsto the Hough peak. Since the topology of rotation

1A local framein asurface point can be given e.g. by the normal and the directions of minimal
and maximal curvaturein this point.

2The translation domain can be easily reduced by an initia translation overlaying the centers
of mass of the two given range images and then only considering all reasonable remaining trans-
lations.



parametersisnontrivial (independent of the chosen parameterization) Hough cells
that are far away from each other in the Hough table can be close to each other
in the sense of corresponding rotations. A simple example is a rotation angle ¢
whose values ¢1 = 0+ € and ¢, = 21— € are close to each other in the sense of
rotations but far away in the Hough table since they lie on opposite sites of the
table.

In this paper we examine the neighborhood structure for three rotation repre-
sentations: the Euler angle representation, the axis and angle representation and
the quaternion representation.

2 Euler angleneighborhood structure

2.1 Definition of Euler angles

We use the Euler angle definition of [4]. A genera rotation matrix in this repre-
sentation is given by the following matrix product:

cosa —sna O cosp 0 snP cosy —siny O
R(a,B,y) = sna cosa O 0 1 0 sny cosy O
0 0 1 —sinf 0 cosP 0 0

€Oos0 cosfcosy—sinasiny  —cosa cosfsiny—sinocosy  cosasin
= sina cospcosy+cosasiny  —sinacosfsiny+cosacosy  sinasin

—sinfcosy sinfsiny cosf
where
0<a<2m (2
0<y<2m ©)
0<B<m (4)

2.2 Extraction of Euler anglesfrom rotation matrices

Transforming point i of the first image in point j of the second image with the
help of the points' local frames resultsin a translation vector ¢ and especialy in
arotation matrix3 R from which the Euler angles a, B,y have to be extracted to

SR is given by Rj,R! where the columns of R;, are given by the local frames of point i in
imagek € {1,2}, eg. if thelocal frames are given by the normal » and the directions of minimal
e’ and maximal e curvatures Ri, = (mi,, e}, e2).
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make an entry in the Hough table at the position corresponding to a, 3, y:

foo rox ro2
R=1|rwo ra riz |=(pBy). )

rao ra1 r22
Since we know that R is arotation matrix it should be orthogonal,
R'R=1=RR. (6)

By ensuring that R is calculated from orthonormal frames we expect that this
condition is satisfied. Nevertheless we have no guarantee that this is really the
case due to numerical errors. The quaternion representation may be advantageous
in this case, since for a given quaternion it is easy to find the next quaternion
which represents a rotation.

Comparing (5) with (1) we especially get the following relations,

r22 = COSB, (7)
ro = sinpsna, (8)
roo = Snpcosa, 9
roy = sSinsiny, (10)
roo = —sSnpcosy, (1)

Before calculating a, 3 and y from (7)—(11) we would like to mention that the
functionsarccos and arcsin are calcul ated by the computer in the following ranges,

¢1 = arccosx — 0 < ¢1 <
¢ = acsinx = -7 < ¢ <

(12)

NIE o

From (7) we get for 3
3 = arccosro). (13)

Since, following to (4), B liesin the range between 0 and 11, sinf3 is equal to or
greater than zero,

sinp> 0. (14)
From (8) we get
sino = 12 (15)
sinf



Note that, if B goesto zero we will run into trouble with this equation.

Since sinf3 > 0 the sign of sina and therefore the range of possible solutions
for a completely depends on the sign of r1z: if riz islessthan zero, sina will be
also less than zero. Since, dueto (2), a liesin the range between 0 and 2, from
sna < Oit followsthat a isin the range between tand 2rt. On the other hand the
computer will give us aresult for o in therange — and 0 when sina < 0,

(14)015) 1 1< g < 0
r<0 == sna<0 ac(0.2m 2 = (16)
= mT < o < 21

In the same way we get in case of r12 > O:

(12 n
rio >0 (14),(15) sina >0 { a:l 0 < a =< 3 (17)
€[0,2r]
— 0 < a < m
Similar conclusions can be made by using the second relation for a Eq.(9),
ro2
cosa Snp (18)
Performing a case distinction for rgp we get,
(12 -
L <
re<0 "2 osa <0 { ae[:oin[ 2 < @ = T (19)
J i} 3
- 5 < 0 < F
(14),(18) ﬁl 0 <a < 3
rop>0 =" cosa>0 de[égﬂ[ 0 < a < % (20)
v < o < 2m
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Combining the conditions from (16),(17) and (19),(20) more precise conclusions
can be made. For example, from (16) and (19) we get,

r2<0 A rp<0 ‘X" nca<om A T<a<
(21)
<o < I
On the other hand, as mentioned in (16), if a is calculated from (15) as
a :arcsinri (22)

sinf3



the computer’s result will be in the range between — 7 and 0. To map thisinterval
on theright interval from (21) we have to perform the following transformation,

a — T—a. (23

This does not change the validity of (22) since, due to the addition theorem for
sine,
sin(mm—a) = sina. (29

To summarize we have,

o <0 A rge<0 : a:n—arcsins%fs. (25)

In the same way combining (16) and (20) we get

a€[0,2
ro<0 A rop>0 2 o< A (0<a<FvI <a<2m

— P <a<2m
(26)
To map the computer’sresult of (22) in the range [— 7, 0[ to theright interval from
(26) we have to perform the following transformation

O — Oo+2m (27)
This does not change the validity of (22) since
sin(a + 2m) = sina. (28)
To summarize we have,
ro<0 A rge>0 : O(:arcsins%nLZn. (29)
Combining (17) and (19) we get

ae[0,2
(15>0 A fp<0 "M gcg<m A Tca< 3

(30)
> S<a<T
Asmentioned in (17), if a is calculated from (22) the computer’sresult will bein

the range between 0 and 7 if ry» > 0. To map this interval on the right interval
from (30) we have to perform the same transformation asin (23). Therefore

ro>0 A rp<0 : a = m—arcsingi. (31)



Finally, combining (17) and (20) we get

>0 A rp>0 = 0<a<m A (0<a<PvI<a<o2n

NIlg

(32)
Since the computer’sresult of a calculated from (22) is aready in the same range
(compare (17)), we do not have to transform a in this case. Therefore
>0 A rge>0 : O(:arcsins%fs. (33)
To formulate an efficient algorithm for the calculation of a note that (25) and
(31) can be combined to

rop<0 : a:n—arcsins%fB. (34)

The essence of (29), (33) and (34) can be combined in the following pseudo-code:
_ H r .
o = arcsin (ﬁ) ;
IF (ro2 < 0) THEN O < TT—Q;
ELSE IF (r12 < 0) THEN O < O + 2TT,

The same derivation as for a can be made for y. This derivation can be shortened
by comparing the relations for y (10), (11) with the relations for a (8), (9): Sub-
stituting in (8) and (9) a by vy, ro2 by —roo and r12 by ro; we get the relations (10),
(11) that are the starting point for a derivation of the determination of y. Therefore
we can make the same substitutionsin the pseudo-code for the determination of a
to get an algorithm for the determination of .

y:arcsin(s%ls);
IF (—r20 < 0) THEN y<— TI—;
ELSE IF (r1 < 0) THEN y <« y+ 2T,

[ is calculated from (13). Since sin3 is used for the determination of o and for
the determination of y it is useful to memorize this value in a separate variable b.
In addition we would like to write rog > 0 instead of —ryg < 0. In thisway the
complete algorithm for the determination of a, 3 and y can be written as:



[3 = arccosray;
b=sinp;

o =arcsin("R);
IF(rog < 0) THEN O <— TTI—Q;
ELSE IF (r12 < 0) THEN O <— O + 2T,

y=acsin();
If (ro0 > 0) Theny <« 11—;
Elself (ro1 < 0) Theny <« y+ 21t

Although this algorithm seems to be very efficient we can reduce the number of
operations if we calculate a and y not from (8) respectively from (10) with the
help of the arcsin function but from (9) respectively from (11) with the help of the
arccos function. Let us derive the relations for a. From (9) (or (18)) we get

ro2
a arccoss|n 5 (35)
Asmentioned in (19) and (20) the computer’s result for a will be in the range
0 <a < 1T if roo>0
= >~ 2 Z Y%
T~ o < if re<O. (36)
On the other hand we know from (21), (26), (30) and (32)
r2<0 A rge<0 — mn < a < 37“
r2<0 A rp>0 = 3 < a < 2n 37)
r2>0 A rp<0 = 7 < a < om
r2>0 A rge>0 — 0 < a < %[
To map the computer’s result for a from (35) to the range [0, 211, a has to be

defined as

rp<0 A rp<0 =« 21— arc:cos.s%fB

<0 A rp>0 = o = 2n— arccoss%nzB a8
re>0 A rp<0 = o = arccoss%nzB (38)
ro>0 A rp>0 @ — o = arccoss%.

This does not change the validity of (18) since, due to the addition theorem for
cosine,
Cos(21— o) = cosa. (39)

The essence of (38) can be combined in the following pseudo-code:
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- to2 ).
a= arccos(sin8>,

IF (ri2 < 0) THEN O < 21— Q;
To get the algorithm for the determination of y we use the same procedure as
described before: sincethe basic relationsfor y (10), (11) can be received from the
basic relations for a (8), (9) by substituting a by v, roz by —rog and r12 by ro1 we
only have to make the same substitutionsin the pseudo-code for the determination
of a:

y= arccos(—s%&;) ;

IF (ro1 < 0) THEN y < 211—;

Therefore the compl ete algorithm for the determination of a, 3 and y can be writ-
ten as:

[3 = arccosroy;
b=sinp;

o = arccos (‘2);
IF (ri2 < 0) THEN O < 21— Q;

y = arccos (—2);
IF (ro1 < 0) THEN y < 211—;

2.3 Problemswith Euler angle deter mination

As aready mentioned before there is a problem with the described algorithm if 3
goes to zero. Since for the calculation of a as well as for the calculation of y a
term is divided by b = sinf3, the agorithm is not valid for = 0 (or B = ) and
will become unstable for 3 — 0 (or B — ). For B — O (B — m) aso the other
entries of the rotation matrix that are not used for the calculation of a, 3 and y so
far are not very helpful for the calculation of a and y. To illustrate this fact we
write the rotation matrix (1) for =0 (B = 1),

R(a,0(m),y) = [ysinacosy+cosasiny ;,sinasiny+cosocosy 0
0 0 1
)

&eos(aty) —sin(aty) 0 >

([ycosacosy—sinasiny 7 cosasiny—sinacosy 0 >

= Hsn(aty) cos(aty) 0
0 41

(40)



Thereforefor B — 0 (B — ) itisonly possible to determine the sum (difference)
of a andy. a or yitself are completely undetermined. This phenomenais known
as the gimbal lock [3]. Another way to express this result is that all rotations
R(a,Ag,y) with a +y = const respectively all rotations R(a, t— Ag,y) with o —
y = const are neighbored. Thus very small variations in the entries of the given
rotation matrix (5) will result in completely other parameters a and y. Therefore
it isin principle not possible to determine the Euler parameters with increasing
accuracy if B — Oor 3 — masitisneeded in the hierarchical Hough table approach
of [2].

2.4 Neighborhood structure

We would like to summarize the neighborhood structure of Euler angles. First,
there are the trivial neighborhoods that do not make any problems:

e (0,By)and (a£Aq,B,y) ¥V a,B,y,
o (0,By)and (a,B£Ag,y) V a,By,
i (avﬁvy)and(avayiAy) v G,B,V.

Since, due to (2) and (3), a and y are in the range from 0 to 2rmand since sing =
sin(¢ + 2m) and cos¢ = cos(¢ + 21) we also have the neighborhoods:

* (Bq,B,y) and (2—Aq,By) VBV,
e (0,B,4y) and (a,B,2m—4y) V a,p.
More subtle are the neighborhoods mentioned in Subsec. 2.3,
e (a,Ag,y) V a,y: a-+y=cong,
e (a,m—Ag,y) V a,y: o-—y=cons.

As aready mentioned in Subsec. 2.3 it isthe Euler angle neighborhood struc-
turefor 3 — 0 and 3 — Ttthat resultsin problems with the Hough table approach
of [2]. In the next subsection we present a solution to overcome these problems.



2.5 Solutionsto neighborhood problems

The basic idea to avoid problems with the determination of the Euler angles a, 3
and y from a given rotation matrix is to ensure that the rotation matrix does not
correspond to an angle 3 — 0 or B — 1. For a given rotation matrix it can be
quickly analyzed from the entry r, = cosp whether 3 — 0or B — 1T if |[roo|| & 1
we will run into problems. Therefore in this case we transform the given rotation
matrix by a constant rotation in such a way that there are no problems to extract
the Euler angle parameters from the combined matrix. In thisway we get unique
parameters for the combined matrix. However, even with these unique parameters
for the combined matrix it is not possibleto get unique parameters for the original
matrix. But fortunately in the Hough table approach of [2] we do not need the
Euler parameters of the original matrix. To clarify this fact we shortly repeat the
algorithm of the Hough table approach. The basic steps are:

1. calculate a rotation matrix (and a translation vector) from every possible
point correspondences of the images to be registered,

caculate three (unique) parameters (p1, p2, p3) from each rotation matrix,
increment a counter in the Hough table at position® (ty, ty, tz, p1, P2, P3),

detect the parameter set that has most entriesin the Hough table,

a » w0 DN

return the translation vector and the rotation matrix that correspond to the
most frequently occuring parameter set.

Thus, although we need a unique parameter set for the rotation in between, we do
not need any parameters for the rotation at the end. Therefore, if we transform
each rotation matrix R from step 1 with a rotation matrix R,. we can get back
the original rotation matrix R in step 5 just by multiplying the combined matrix
R.<Rby R_1 = R!  fromtheleft.

As mentioned above it is quite easy to analyze whether a given rotation ma-
trix will run into trouble with the 3 — 0 or 3 — 1t problem. However, it is the
principle of the Hough table approach that the same parameter set is used for
all rotations and trandations. Therefore it is not possible to detect a problematic
matrix, transform it with a constant rotation R, calculate the rotation parame-
ters and increment a counter in the Hough table at the position of the parameters.
We have to decide beforehand whether we want to transform al given rotation

4y, ty andt, are the translation parameters.
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matrices by a constant rotation or not. But since we do not know beforehand
whether the searched transformation (the transformation that should correspond
to the Hough peak) will fail on the 3 — O, 1t problem, we have to do both: we
have to transform all given rotation matrices by a constant rotation and build up
a Hough table for them and we have to extract the rotation parameters from the
original rotation matrix and build up a separate Hough table for these parameters.
We would like to mention that instead of transforming each of the n? rotation
matrices in step 1 with R (n is the number of points (respectively regions,
compare [2]) in each of the images to be registered) it is also possible just to
transform the n points (respectively ~ n? regions!) and local frames of the second
image®. The rotation and trang ation from point p;, of the first image to point p i
of the second image is given by
Rilﬁiz = RizRitlv (41)
tisi, = P~ R Ri,piy (42)

where the columns of R, are given by the local frame of point j in image k.
Therefore transforming the points and local frames of the second image by R«
results in the new rotations and trandations

RoonisjzRitl - RconstRij_%jz 9 (43)
ResPi, — R R, Rl piy, = Rewtiisj, - (44)

In thisway we can register the parameters of the rotation matrix R« Ri,j, and
of the trandation vector R.,ti,—j, in the Hough table, detect the parameter set
with maximal entry in the Hough table, rebuild the rotation matrix (and the trans-
lation vector) from this parameter set and finally return the retransformed rotation
matrix Rj,j, and translation vector #,_,j, by multiplying Rt from the left,

const
Ri1—>j2 = R(t:ons (RconstRil—>j2) 3 (45)
tli — J 2 - R(t;ong (Rconst tl 1— ] 2 ) . (46)

Of course, separate Hough tables have to be build for the transformations fol-
lowing from the transformed points and frames and the transformations following
from the original points and frames.

Till now we have shown that the problems resulting from the neighborhood
structure for f — 0, Ttcan be solved by an additional constant rotation R.,.. Now

S1f the transformation from image 1 to image 2 is calculated the points and local frames of the
second image have to be transformed (compare (43) and (44)).
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we would like to give an example for a good choice of such a constant rotation
matrix. Therefore we explicitly write down the matrix product R, R, j, for the
case 3 — 0, and compare the result with the rotation matrix in the Euler angle

parameterization (1),

Roons: Ri 1—>j2

foo fo1 fo2 cos(u(f)y) —sin(a(t)y) 0

Flo f11 Fr (m)sin(aty) cos(atyy) 0 (47)
fr2o o1 I 0 0 (—)1

Foocos(a (f)y) (Jj)s’n(a (Jj)y) —Fgosin O((Jj)y +Fo1 cos a(f)y (—)fo2

3
N

FlOCOSEa Y) & fusin u(f)v; ~fiosin(a fyy)+ficos(a fyy) (=)

Faocos(a L)) Iyfasin(a D)y)  —faosin(a L)y)+Facos(afyy) ()2
(48)

cosa cosBcosV—sinGsinV —cosa cosf%sin?—sindcosv cosdsinf%

sind cosPcosy+cosdisiny —sindcosPsiny+cosdcosy sindsinp (49)

—sinf%cos? sinf%sjn\? cosf%

Since d,  and § are calculated as described in Subsec. 2.2 from the matrix entries
ro2,r12,r22,r20, 21 we especialy get from a comparison of (48) with (49),

(+)F22 = cosp, (50)

(-)ffz = cosdsing, (51)

(-)fi2 = sindsing, (52)

Faocos(a t)y) f farsin(afy) = - cosysing, (53)
—fosin(at)y) +f2cos(afy) = sinysinp. (54)

To avoid the gimbal lock problem in the matrix (49) we would like to have avalue
for 3 so that sin3 and cos3 have the same values, i.e.

ézg — sinézcosﬁzi. (55)

V2

This can be reached by appropriately choosing fij. Inserting (55) in (50-54) re-

sultsin

,r :—, 56
(—)F22 7 (56)

12



. 1
(-2 = cosdi—— (57)

N

(-f12 = sind%z, (58)
Faocos(a t)y) f Farsin(afy) = —cosv%z, (59)
—fosin(at)y) +facos(afy) = sin\”/ﬁ. (60)

Till now only 2> is determined through (56). Thusthere is additional freedom in
choosing R..... We would liketo choose @ in (57) and (58) again in away so that
sind and cos@ have the same values, i.e.

. T . ~ 1
a=- — d9Snd=cosad=—. 61
Inserting (61) in (57-58) we get
N 1
(—)fo2 = > (62)
N 1
(M2 = > (63)

It is not possible to choose y in (59) and (60) with the same freedom as & and [~3
sincey dependson a &Y (and not only on 20 and f21). Neverthelessthereis some
freedom in choosing f'xg and f21. There isonly one constraint we have to observe:
from the orthogonality of R, i.6. R.sR!. = 1, we get 9 equations that all
reduce to the same equation when we insert the already chosen values for gy, 21
and 22 from (62), (63) and (56) in R,

o 1

I'%O + r%l = é (64)
This equation follows directly from the component (R .« R!,.),,. To prove that
the equations following from the 8 other components of R, R! , result in the

same equation (64) in a first step al components of R, have to be expressed
through 29, 21, F22, Fo2 and f12. This can be easily done by using (1) and (5),

( 02) | (cosacosBcosysinasiny — cOos0 cosPBsiny—sina cosy cosasinB)

=
]
i

00 fo
sinacosBcosy+-cosasiny  —sinacospBsinycosacosy  sinasin
—sinBcosy sinBsiny cosp

(65)

1

o
=

1 12

TR
=

o
TR

=

2 21 22

13



By inserting the relations following from (65)

cosasinp = fop

SnasinB = i1z

—cosysinp = fy

sinVsinB: 21

iN (Rons) g s (Reont) o1 » (Roons) 10 8N (Rens) 11 from (65) we get

Roonst =

sin2B+cos?p=1
%

N
= cosa:_ﬁ,
sinf3
. — T
— smu__i,
sinf3
_ r
— cosy_—i,
sinf
.= Im
— sny=——,
sinf3
cospB = T
sSn’B = 1-—F5,

F12f20—Fo2f22f21

—Fo2f20f22—F12f21
1-75 1-5,
fafop—foofoof1p  —F12f21F20—Tpof20
1-73, 1-75,
f20 f21

14
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(70)
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In thisway it is straightforward to see that the nine equations following from

1 = Rconst R};ong

“fooT20722=MaT21  Ti2f0=ToploaM1 ¢, “fooT20722=MoT21  Taalop=Toof2M2 ¢,
1-75 1-75, 173, 1-73,
— foafop—Foofpof12  —F12f21f20—Foofoo = F1ofo0—fopfoofon  —F12f21f20—Foofoo
> = r2 ) = 21
1-F 1-F 1-F 1-F
2 22 2 22
20 P21 P22 Foz F12 P22
o \2 I T Y 2
~Toafor2p—T1aP21 |, (=Fo20722=T12721) (F21702 =20 2012) —Fopfoofan—F1ofo1 -
—Too20"23 T12To1
1-1 (13 )2 = foo+
5 22 o My
F12f20=Topl 20 21 |~ 52 (F12M20—Too 22721 ) (F1gf 2172200 20) .~ T127207102122'21 ), 17ty
1-72 02 2 \2 02'12 1-5,
2 (1-1%,)

_ 2 \2 -
- (1-%) 2 )
(FlZFZO*F02F22F21)(*FnglFZZ*FOZFZO) HooT1o <—F12f21”22—F02~20> 13, w%#@}z
F 1-73 22
(1-73,) 22
—Fozfztlfzfz—flzle Pt F21f021—fF20F22f12 oot S
122 22 F59+75+F
"12T20 TopM22M21 ¢ 150800 M1t T0oM 20, 4, 20Tt
1-7%, 1-72,

all reduce to (64) when we insert f'op and 12 from (62) and (63).
Now we come back to (64). This condition is satisfied e.g. by choosing

. . 1
oo =121 = é (74)
Therefore we finally get from (56), (62), (63), (72) and (74) the reasonable choice

for R«

142 v2-1 1
N
RCOHQ — 271 - l+ 2 l (75)
SO
2 2 /2

There is another possibility to avoid problems with the determination of the
Euler anglesif  — O or 3 — 1t Since, aswewill seelater, other parameterizations
runinto problemsat parameter configurations belonging to other rotations, we can
calculate from each rotation matrix two parameter sets belonging to two different
parameterizations and register these parameters in two different Hough tables. In

15
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1 2102202212 1y
17
2
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this way we save the extra rotation with R, from above and avoid the gimbal
lock problem in at least one Hough table.

An even better way to avoid the problems with the gimbal lock is to choose
a parameterization that does not suffer from this problem. As will be seen later
the quaternion representation is such a parameterization. Since the quaternion
representation has another neighboring problem that makes the construction of the
Hough table in certain cases very difficult and since the quaternion representation
leads to a memory consuming Hough table due to its topology, we propose to
use the quaternion parameterization only in the first iteration of the Hough table
approach of [2], detect the Hough peak and then aternate to an Euler angle like
parameterization that has no gimbal lock problems in the neighborhood of the
Hough peak. In thisway no extra calculations are necessary to avoid problems
with the gimbal lock.

3 Euler anglelike neighborhood structure

The definition of Euler anglesis not uniquely handled in the literature. In Subsec.
2.1 EQ. (1) we have defined the Euler angles following to [4] by

Ry (0,B,Y) = R(a)Ry(B)R,(y) O<a,y<2m 0<f<m (76)

where R(¢) describes a rotation where the unit vector i specifies the direction
of the axis of rotation (herey and z axis of the given coordinate system) and ¢ the
angle of rotation around that axis. On the other hand in [1] the Euler angles are
defined by

Rz (0,B,Y) = R(0)Rx(B)R,(y) O<a,y<2m O0<B<m  (77)

These parameterizations have the gimbal lock problem for  — 0 and B — T
Therefore in situations where we are only interested in small transformations, i.e.
transformations near the identity with Euler parameters close to 0, these parame-
terizations are not a good choice. In such cases it may be advantageous to use the
Euler like parameterizations

RZYX (C(, va) = RX(V)RY(B)RZ(G) 0 S GaV< 2T[a - I

2

NS

<B< (78)

—cosasinfcosy+sinasiny  sinasinfcosy4cosasiny  cospcosy

(79)

cosa cosf3 —sinacosf sinf3
. cosasinfsiny+sinacosy  —sinasinfsiny+cosoacosy —cospsiny
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or
T
2

Tt

nyz (G7B7y) = Rz(y)Ry(B)Rx(a) O S a7y< 2T[7 2

<B<; (80)

cosfcosy sinasinfcosy—cosasiny cosasinfcosy+sinasiny
= cosfsiny sinasinsiny4cosacosy cosasinfBsiny—sina cosy 81)
—sinf sina cosf3 cosa cosf3

We would liketo derive algorithmsfor the extraction of the angle parametersfrom
rotation matrices for these two parameterizations in the following subsections.

3.1 Extraction of angle parameter sfrom rotation matrices. ZY X
case

Using R (a,,y) in (78) in the form (5) we especialy get from (79)

roz = sing, (82)
rop = COSQ COSf3, (83)
rop = —snacosp, (84)
rip = —cospsny, (85)
ro» = Ccospcosy, (86)

Since, following to (78), B liesin the range between — 7 and 7, cos is equal to
or greater than 0,

cosf3 > 0. (87)
From (83) we get i
~ Too
cosa = cosp” (88)

Since cosf > 0 the sign of cosa and therefore the range of possible solutions for
o completely depends on the sign of roo: if rog is less than zero, cosa will be
also less than zero. Since, dueto (78), a liesin the range between 0 and 21T, from
cosa < 0Ot follows that a isin the range between 7 and 37" On the other hand,
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from cosa > 0 it follows that a is either in the range between 0 and Z or in the
range between 3" and 2,

roo< 0 (8%8) cosa < 0 aeﬁgm g< a< 37117 (89)
roo >0 (8%58) cosa >0 aeﬁgm 0<a< I (90)

2
3mn
Vv ?§a<2n.

Similar conclusions can be made by using the second relation for a Eq. (84),

: rox
S 1
sina cosp (91)

Performing a case distinction for rg; we get,

rm <0 (81—’(21) sina >0 ue[égn[ O0<a<Tm (92)
rop >0 (81—’(31) sna <0 ae[égn[ m<a< 21 (93)

Combining the relations from (89), (90), (92) and (93) more precise conclusions
can be made,

r0<0 A rp<0 (2L T<a< 3 A 0<a<Tm
— T<a<m

ro<0 A rp>0 (82:(%9) T<a< 3 A TI<O<2m
- n<o< I,

ro>0 A To1<0 2.6 (0<a<i v F<a<om) A O0<a<m
— 0<a<g,

(0>0 A rp>0 2P (0<a<? v F<a<om) A T<A<2M
s F<a<2m
(94)
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When computing a from (88) respectively from

r
o= arccoscﬂ (95)

os3

the computer’s result will be in the range [0, 11| following to (12). To be precise a
will bein the range

0 <a < 1T if roo>0
> >~ 3 — Y
g < a < 1 if rgo<O. (96)
To map the computer’s result to the range [0, 211, a hasto be defined as

ro<0 A rp<0 = a = arccosc%?ﬁ,
fro<0 A rpg>0 = o = 2n— arccosc%sos, o7
ro>0 A rg<0 = o = arccosc%?ﬁ, (97)
fro>0 A rgp>0 = o = 21— arccos—%.

cosf3*
Again, this does not change the validity of (88) dueto (39).
The essence of (97) can be combined in the following pseudo-code:

_ foo -
a= arccos(cosﬁ> ;

IF (rop > 0) THEN O < 21— Q;

To get the agorithm for the determination of ywe proceed asin Subsec. 2.2: since
the basic relations for y (85), (86) can be received from the basic relations for a
(83), (84) by substituting a by vy, roo by ro2 and roz by ri2 we only have to make
the same substitutionsin the pseudo-code for the determination of a:

y= arccos(cr(%ﬁ);

IF (ri2 > 0) THEN y < 211—;

Therefore the complete algorithm for the determination of a, 3 and y can be writ-
ten as:

B =arcsinroy;
b = cosp;

o = arccos ('2);
IF (ro1 > 0) THEN O < 21— Q;

y = arccos (‘&);
IF (ri2 > 0) THEN y < 211—;
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3.2 Extraction of angle parameter sfrom rotation matrices. XYZ
case

Comparing Ry (0, B,Y) inthe ZY X case (79) with Ryy, (a,3,y) inthe XY Z case
(81) we recognize that the matrix entries, that are relevant for the parameter ex-
traction in the ZY X case, roo,ro1,r02,r12 and ro are quite similar to the matrix
entries rop, 10,20, 21 and roz inthe XY Z case:

roo IN(79) = r2» in(81)
roo IN(79) = —rp; in(81)
o2 in (79) = —I2 in (81) (98)
o in (79) = —TI10 in (81)
roo in(79) = rgo in(8L)

Therefore if we make the substitutionsinduced by (98) in the pseudo code for the
determination of angle parametersin the ZY X case we get an agorithm for the
determination of the angle parameters in the XY Z case. In addition we prefer to
usery; < 0andrg; < Oinstead of —rp1 > 0and —rq9 > O:

[3 = arcsin(—rzo) ;

b = cosp;

o = arccos (‘&);
IF (rz1 < 0) THEN O < 21— Q;

y = arccos (‘®);
IF (ri0 < 0) THEN y < 211—;

3.3 Problemswith angle parameter deter mination

Of course, the Euler angle like parameterizations al so suffer from the gimbal lock.
Although the gimbal lock problem does not occur at 3 — 0 and 3 — Ttwe run into
problems for B — —7 and B — J since in the calculation of o and y a term is
divided by cosp that isO for = —7 and p = 5. Asfor the usual Euler angles
in Subsec. 2.3 for the critical values of (3 the other entries in the rotation matrix
that are not used for the calculation of a, 3 and y so far are not very helpful for the
calculation of o andy. For B = -3 (B = 7) we have

0 0 -1
n B . . ) ) (+)
Rzyx(a, (;)E,y) = (&) cosasiny+ S|_n0( cgsy (j) s!nO(smy+ cosa C(?SV 0
(t) cosa cosy+sinasiny 7, sina cosy+- cosa siny 0
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0 0 1
sin(a;)y) Cos (@zy) 0 (99)
Geos(agy) g sin(agy) 0

(1) Sinasiny+cosacosy (;, cosa siny— sina cosy

() Sinacosy—cosasiny ;) Cosa cosy+sinasiny
1 0 0

0
0 cos(a (t)y) —sin(a (f)y)

! 0 0

Gsn(aty) G cos(aty)
(100)

Therefore for B — +7 it is only possible to determine the sum respectively dif-
ference of a and y. As aready mentioned in the context of the usual Euler
angles in Subsec. 2.3 another way to express this result is that al rotations
Ryx (0, 7,5+ Ag,Y) witha 7 y= const respectively all rotations Ryy; (a, 5,5 g, Y)
with o *,y = const are neighbored. All other neighborhoods are the same as de-
scribed for the usual Euler anglesin Subsec. 2.4.

4 Axisand angle neighborhood structure

In the axis and angle parameterization of rotations a rotation is characterized by
an axis of rotation 7 and an angle of rotation Y around that axis: Ra(W) (see Fig.
1). The axis of rotation is determined by the polar and azimuthal angles (6, ¢) of

itsdirection with

0< 6 <m (101)
0< ¢ <2m . (102)

For the angle of rotation Y we have

o<y<m (103)

There isaredundancy in this parameterization:

R_a(m) = Ra(T) . (104)

The structure of the parameter space can be visualized by associating each rotation
with a three dimensional vector v = Y7 pointing in the direction 7 with magni-
tude equal to Y. The tips of these vectorsfill a 3-dimensiona sphere of radius Tt
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Figure 1: A rotation can be characterized by an axis of rotation and an angle
of rotation around that axis (left). The parameter space of an axis and angle
parameterization (right): each rotation is associated with a three dimensional
vector pointing in the direction (6, ¢) with magnitude equal to the rotation angle

y.

Because of the redundancy expressed in Eq. (104), two points on the surface of
the sphere on opposite ends of a diameter are equivalent to each other [4] (seeaso
Fig. 4).

Having the cartesian coordinates of the axis of rotation it is easy to get its
spherical coordinates. We have

Nk = sinBcoso, (105)
fy = sinBsing, (106)
N, = cos6. (207)
From (107) we get
0 = arccosn,. (108)
Since, dueto (101), 6 € [0, 11
sn6 > 0. (109)

Therefore, following to sin@ + cos?6 = 1 we have
sn® = ++v1-cos?6 (110)
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L 1os2. (111)

In thisway by combining (105) and (111) we get

N

¢ = arccos . (112)
Az

Due to (12) the computer’s result of (112) will be in the range between 0 and Tt
But following to (102) ¢ should be in the range between 0 and 2. Therefore in
addition to (105) we have to recognize (106). From (106) we get

ing — Y
sing = 5. (113)
Since, due to (109) sin@ > 0, the sign of sing and therefore the range of ¢ com-
pletely depends on fy: if iy > 0, sing > 0 so that ¢ isin the range between 0 and
Tt if Ny < 0, sing < O sothat ¢ isin the range between Ttand 2m. Thus we have

. Ax
Ay >0 == = arccos , 114
y > ¢ T2 (114)
A
fiy<0 = =21 accos———. (115)

J1-m2
Again (115) does not change the validity of (105) due to (39).

The essence of (108), (114) and (115) can be combined in the following
pseudo-code:

0 = arccosf;

¢ = arccos —x—_:
1-i2

IF (fy < 0) THEN ¢ «+ 21— ¢;

All we have to do is to determine the axis of rotation in cartesian coordinates 7
and the angle of rotation .

4.1 Determination of the angle of rotation

To determine the angle of rotation we have to find an expression for an arbitrary
rotation matrix in terms of the axis 72 and the angle of rotation Y. Let us assume
that we have already determined the axis of rotation 72 (we will perform this step
in the next subsection with the results from this subsection). Then the rotation
around 72 can be decomposed into three steps, e.g. into
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1. Rotate the coordinate system so that the x-axis coincides with the rotation
axis described by 7.

2. Rotate about Y around the x-axis.
3. Rotate the coordinate system back so that the x-axisisin its old position.

The advantage of such a decomposition is that it is easy to specify the rotation
matrices belonging to each of these steps. The easiest step is the rotation about Y
around the x-axis

1 0 0
Ry=| O cos¢y —sny |. (116)
0 sny cosy

If we denote the rotation matrix that rotates the x-axis to the rotation axis 72 by R
we have for the rotation matrix R describing the rotation around 72

Ra= RRR' (117)

by recognizing R~ = R!. Note that the first performed rotation is the inverse
of arotation of the x-axis to the rotation axis 72 which is the same as rotating the
coordinate system in away so that the x-axis coincides with 7. It is now our task
to construct R.

Since R is defined by rotating the x-axis to the rotation axis described by 7,

we have
1 fy
BRlo|=[n]. (118)
O ﬁz

In addition we know that the image 7, of (0,1,0)' must be perpendicular to
(fix, Ay, Nz) since angles are invariant under rotations

fix
Az

7, isnot uniquely determined by (119). One possible solution for 73 | from (119)

IS
—fy — fi,
i . (120)
A



Since lengths are preserved under rotations the image 72, of (0,1,0)" in addition
hasto be normalized to 1:

AL, L ~fy— i
nLy = Nx
AL, VR -2\ Ay
s 1,
= fix (121)
V2o —g—n2 \  f,

where in the last equation we have made use of the normalization condition for 1,
Az + A2+ AZ = 1. Since

0 1 0
o|l=(o0]x[1 (122)
1 0 0

and since the cross product is invariant under rotations, the image 71 of the third
base vector (0,0,1)" is

5% - ﬁ X ﬁL
f —fy—N
(118),(121) X 1 y — 1z
— ny X nX
A, \/2+ 2fyh, —AZ — A2 Ay
1 Ay fix — Azl
_ A2 — Ay, — 1 (123)

where in the last equation we again have made use of the normalization condition
for n.

Since the columns of amatrix are the images of the base vectors we get from
(118), (121) and (123) for R

A —fy g yfh—Rzfix
X /2r2Af e \/220f,—e—hZ
R=| 1 e 5 O ] 124
- Y 2r2Af- - /220,12 (124)
A fix *ﬁ%+ﬁyﬁz+l
z

2+20y0 -2 \/2+20yA,— g2
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Itisnow straightforward to calculate Ry = R Ry R! from (117) by using (116) and
(124). However it is advantageous to write down RRyR! at first with a general
matrix R to facilitate the calculations:

foo for fo2 1 0 0 foo 10 T20
Ry = fio f1 T2 0 cosy —siny for f11 T2
foo 21 T2 0 sny cosy foo T2 T2
62 | (62 o2 Foof10+(Forf11+F02f12) cosy—  Foofao+(To1fa1+F02i22) cosw+
2 1 (72 4-2,) cos 017117021 12 01721702122
bo (61 +762) cosw (Forfr2—Toof11) siny (Foof21—To1f22) siny
_ Foof10+(ForF11+Foof12) cosy+ 52 (o2 F1of20+(F11F21+F12720) cosy—
— (forf12—Foof11) Sinw r10-|—( 11-|—r12) cosy (Fr1P2p—F12f1) SN
Foof20+(Forf21+Foof2n) cosw—  Fagfog+(Frafor+F12F20) cos+ 62 | (22 &2
(Foof21—To1fo0) siny (F1af22—F1ofo1) Sinw ot (P31 +72,) cosy
(125)

Now we use (124) in (125) to get for R;

A2+ (1-AZ) cosy Axfy(1—cosy)—fzsiny Az (1—cosy)+hysiny
Ra= | fdy(1—cosp)+ising  AZ+(1-A2)cosy  fyhy(1—cosy)—fxsiny | . (126)
Az (1—cosy)—Aysiny Ay, (1—cosy)+Acsiny A2+ (1-2) cosy
It was our aim to determine the angle of rotation ) from a given rotation matrix

R. Therefore ageneral rotation matrix R likein (5) should be compared with R
from (126). We get e.g.

roo = Az + (1— AZ) cosy. (127)
Thus, if Ay # 1 we have
A2
loo — Ny
= . 128
U] arccos( 1_ﬁ)2() (128)

If fiy = 1 we conclude from the normalization of 7, AZ + AZ + A2 = 1, that Ay =
A, = 0. Inserting A = (1,0,0)" =: 7y in Ry from (126) we get

1 O 0
Ry =| O cosy —siny (129)
0 sny cosy
so that Y can be determined e.g. by
) = arccosr. (130)

The essence of (128) and (130) can be combined into the following pseudo-code:
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A2
~ . roo—nN: .
IF (Ax # 1) THEN P = arccos( 1_ﬁ§X) ;
ELSE Y = arccosris;

4.2 Determination of the axisof rotation

We want to determine the axis of rotation from a given rotation matrix R. The
characteristic of the axis of rotation is that it is invariant under the rotation. In
other wordsit is the eigenvector of the corresponding rotation matrix to the eigen-
valuel
roo fo1 ro2 A
Rn = o rix riz ﬁy
ro ra1 r Az
Ax
= 1| ny |. (131)
A

The most elegant way to determine 4 is by recognizing that R' has the same
eigenvector and eigenvalue as R since

i = 1n=(R'R)%d=R'(Rn)
= (132)
Combining (131) and (132) we have
0 ror—r10 ro2—rz0 fix
(R—RY)A=| ro—rio 0 ri—rxn Ay | =0. (133
roo—roz ra1—riz 0 Nz

We already know that only 2 of the 3 equations in (133) are independent, since,
if 7 isan eigenvector of R, also all multiples of 72 are eigenvectors of R to the
same eigenvalue. Considering the equations corresponding to the first 2 rows in
(133)

(ror —r10) Ay + (roz—roo)f; = 0, (134)
(rio—ro1) fix+(ri2—ra21)f; = 0 (139)
we get
Ay = :zz::‘iinz (136)
f = 272y (137)
ror —rio
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provided that rop —r10 # 0. If rop — r10 = 0, (134) and (135) reduce to

(I’og — I'20) ﬁz = O7 (138)
(I’12 — I’zl) ﬁz =0 (139)

so that we have to consider the third equation following from (133)

(I’zo — I’oz) Ay + (I’zl — I’12) ﬁy =0. (140)
If rog # rop we get from (138) and (140)
n, = 0O, (141)
" Ma—"ro1 .
Ny = Ny. 142
§ r20—"roz (142

Otherwise, if rog = rop, (140) reducesto
(I’zl — I’12) ﬁy = 0, (143)
so that we can conclude from (139) and (143)

r’.\IZ = 07 (144)
A, = 0 (145)

if rp1 # roo. If inadditionrp; = rp, wehave R = R = R, sothat R2= 1. In
other words, rotating two times around the same axis about the same angle will
give the identity. So we can conclude that we rotate about an angle of 0° or 180°
around an unknown axis of rotation. If we rotate about 0° already R (and not just
R?) istheidentity (R = 1). Thus, al vectors 7 are eigenvectorsof R. Insuch a
case we choose the same eigenvector as in the case r1 # ri2. If we rotate about
Y = 180° we get from (126) withsinyy =0 and cos = —1

2021 2fkhy  2fkf,
Ri=| 20y 202-1 207, | . (146)
20uh,  2RyA, 221

If we compare this with a given rotation matrix R as in (131) we can conclude
from the following two resulting equations whether the angle of rotation ) is 0°
or 180°,

ro = 2/2—1, (147)
g, = 2ﬁ>2,—1. (148)



If roo=1andri; = 1 wecan concludethat y =0 (i.e. R = 1), since otherwise
we would get in this case from (147) that A2 = 1 and at the same time from (148)
that ﬁ§ = 1. But since7i isnormalized in (146) (see (118) for its precise definition)
AZ = A7 = 1isnot possible.

To determine 73 in the case Y = 180° we get from (147), (148) and (146)

=122, (149
1

Ay =+ “12+ , (150)
1

fi, = & r222+ . (151)

To get the correct signs for fiy, Ny and N, we have to compare again (146) with the
given rotation matrix R,

ro2 = 2fxfy, (153)

Due to the redundancy (104) it is possible to arbitrarily choose one of the signsin
(149-151), e.g.

roo+1
5
Then we can directly follow from (153) and (154) the signs of fix and fy if i, # O,

fi, = + (155)

fp<0 PP 5 g (156)
rp<0 2P R o (157)

If A, = 0 we again have (due to the redundancy (104)) the freedom to arbitrarily
choose one of the signs of fiy or fy, e.g.

1
A= + r°°2+ . (158)

Then, for the sign of fiy we have to consider (152),

ror < 0 2 q o, (159)
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If in addition fy = O we can arbitrarily choose the sign of fiy, e.g.

rm—+1
2
The essence of (136), (137), (141), (142), (144), (145), (147), (148), (149),
(150), (155), (156), (157) and (159) can be combined into the following pseudo-
code where we additionally take the normalization of 72 into account:

= (l‘oj_ 75 I’10) THEN

A — r20—To2.
My = ron—rio’
fi, = f2—ra1.
X To—r10’
r=/M2+n2+1;

A~

nZ:
nyeAT,
Ay <

ELSE IF (rpo # roz) THEN

n, = 0;
Ay = f1o—ra .

. (160)

3)

1.
rA’
ny .

r20—ro2’
r=ng+1,
Ny =,
fix — =

ELSEIF (rp1#r12 OR (rpo=1 AND ry;=1)) THEN

{

[En

ﬁZ:O,
fx = 1;
ELSE
~ r 1.
Ny = 002+,
A ria+1.
Ny = 2
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r’.\IZ: 2
|F (fAz # 0) THEN
{
IF (rog < 0) THEN fiy < —fiy;
IF (ri2 < 0) THEN Ay < —fy;
}
ELSE
{
IF (ror < 0) THEN Ay < —fy;
}

}

We will discussthe neighborhood structure of the axis and angle parameterization
in further detail in a comparison with the quaternion parameterization described
next.

5 Quaternion neighborhood structure

The quaternion parameterization is very similar to an axis and angle parameteri-
zation in its neighborhood structure. But before diving in the quaternion neigh-
borhood structure we give at first a short introduction to quaternions and their
calculation rules, and we describe how to extract the quaternion parameters from
ageneral rotation matrix.

5.1 Introduction to quaternions
A quaternion g can be represented in the complex number notation
0= do+idx+ jay+ ko (161)

with real part ¢p and three imaginary parts gy, gy, d,. For theimaginary unitsi, j,k
the following equations hold:

i = -1 i? = -1 k¥ = -1,
ij = k ik = i, ki = |, (162)
i = —Kk ki = —i, ik = —j.
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With (162) the multiplication of quaternionsr and g can be defined in terms of the
products of their components,

fq = (roQo—rxOx —ryQy —rz0;)
+1(roGx + rxdo + rydz — rQy)
+j (rOQy —I'xQz+TyQo + r20x)
+k(roz+ rxGy — ryx +zqo) -
In general rq# .
The dot product of two quaternions is the sum of products of corresponding
components:
P-4 = Ppodo+ Pxtx+ PyCy + PGz (163)
The square of the magnitude of a quaternion is the dot product of the quaternion
with itself:
la)?=a-q. (164)
A unit quaternion is a quaternion whose magnitude equals 1.
The conjugate of a quaternion negates itsimaginary parts:

q° =0o—iax— jay — ko (165)

Vectors can be represented by purely imaginary quaternions. If r» = (XY, z)T,
we can use the quaternion

r=0+ix+ jy+kz (166)

Scalars can be similarly represented by using real quaternions.

Using the fact that only rotations preserve dot products and cross products, we
can represent a rotation by a quaternion if we can find a way of mapping purely
imaginary quaternions (that represent vectors) into purely imaginary quaternions
in such away that dot and cross products are preserved. It can be shown that the
composite product

' =aig’, (167)

where g isaunit quaternion, transforms the imaginary quaternion r into an imagi-
nary quaternion f’ and preservesthe dot and cross products between i and a second
imaginary quaternion ro. Since

(=a)F (=q") = gfa’ (168)
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—( represents the same rotation as g.
It is straightforward to verify that the composition of rotations corresponds to
multiplication of quaternions:

i = pr'p*

= p(&ra) p’

= (pa)F(pa)”.

The overall rotation is represented by the unit quaternion pg.

It may be of interest to note that it takes fewer arithmetic operations to mul-
tiply two quaternions than it does to multiply two 3 x 3 matrices. Also, since
calculations are not carried out with infinite precision on a computer the product
of many orthonormal matrices may no longer be orthonormal, just as the product
of many unit quaternions may no longer be aunit quaternion. However it istrivial
to find the nearest unit quaternion, whereas it is quite difficult to find the nearest
orthonormal matrix.

Unit quaternions are closely related to the geometrically intuitive axis and
angle notation. A rotation by an angle g about the axis defined by the unit vector
1 = (fy, Ny, ﬁZ)T can be represented by the unit quaternion

A | R | AT R

q_cos§+sm§(|nx+1ny+knz). (169)
Therelation of a unit quaternion g to the familiar orthonormal rotation matrix R
isgiven by

2(qyox+0odz)  (F—ok+ag—aZ)  2(aydz— o)

2 (G0 — Glodly) 2(GeOy+0ot) (05— 0 — o + )
(170)

( (§+05—ag—aZ)  2(axGy— Godlz) 2 (OxGz + Godly) >
Rq =

5.2 Extraction of quaternion parametersfrom rotation matri-
ces

We use the relation (169) to extract quaternion parameters from arotation matrix.
From (169) we get,

Qo = cos%, (171)
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A ;

Figure 2: The neighborhood of a rotation near the identity transformation in the
axis and angle parameterization (left). Snce the spherical coordinates (6, ¢) of
pointsin the neighborhood of the origin take on all valuesintheir definition range,
the neighborhood of the identity transformation is spread over the whole planein
the Hough table belonging to an angle of rotation ¢ ~ 0 (right).

Ox = sin%ﬁx, (172)
Oy = Sin%ﬁy, (173)

The parameters of the axis of rotation fiy, fiy and A, can be determined by the
algorithm on page 30, the angle of rotation Y can be determined by the algorithm
on page 26.

Note that since 0 < < 1t (cf. (103)) qo isaways greater or equal to zero.

5.3 Comparison of neighborhoods in the quaternion and axis
and angle parameterization

Although we use the same algorithmsto determine quaternion parameters and the

parameters in the axis and angle representation we will argue that the quaternion

parameterization is more suited for the Hough table approach to registration as
described in [2]. The reason for this can be best explained by a visualization of
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qZA QZA (-1,41,+1)

(+1,-1,+1)/E

Figure 3: The neighborhood of a rotation near the identity transformation in the
quater nion parameterization with parametersqy, gy and d,: (left) inthe parameter
space, (right) in the Hough table. Since there is no relevant difference between
the representationsin the parameter space and the Hough table (in contrast to the
axis and angle parameterization) both representations can be combined (see also
Fig. 5).

the parameter space of an axis and angle parameterization (see Fig. 1). Asalready
mentioned the structure of the axis and angle parameter space can be visualized by
associating each rotation with a three dimensional vector v = Y7 pointing in the
direction of the rotation axis with magnitude equal to the angle of rotation . If
we are now close to the origin, which means close to the identity transformation,
the neighborhood of arotation can be extended to an areaaround the origin. But if
we use spherical coordinates, asit is done in the axis and angle parameterization,
the points in this area take on al values in their definition range. Therefore, if
we use the axis an angle parameters as indices in a Hough table the neighborhood
of the identity transformation is spread over the whole plane in the Hough table
belonging to an angle of rotation Y ~ 0 (see Fig 2).

In the quaternion parameterization we use the cartesian coordinates of the
pointsin the neighborhood of the origin. Since in cartesian coordinates the origin
isno extraordinary point, we have not the ambiguitiesasin the axisand angle case
(seeFig. 3).

As already mentioned in Sec. 4, because of the redundancy R_(T1) = Ra(T),
two pointsin the axis and angle parameterization on the surface of the parameter-
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Figure 4: The neighborhood structure of the axis and angle parameterization fol -
lowing from the redundancy R_x (1) = Ra(T7) Visualized in the parameter space.

izing sphere on opposite ends of a diameter are equivalent to each other. From this
fact it follows asomewhat involved neighborhood structurein the parameter space
(see Fig. 4) that would aso be present in a Hough table, i.e. when the parame-
tersare used asindicesin a 3-dimensional table: the neighborhood is divided into
two separated areasin the parameter space. Since the quaternion parameterization
is an axis and angle parameterization in cartesian coordinates, there is the same
neighborhood structure in the quaternion parameterization (compare Fig. 5).

It is worth to mention that, since there is no relevant difference between the
representations of quaternion parametersin the parameter space and in the Hough
table, it is possible to combine both representations (see Fig. 3 and Fig. 5).

6 Final Conclusions

The best way to avoid problems with the determination of rotation parameters
from a given rotation matrix is to choose a parameterization that has no principal
problems in determining these parameters. The quaternion parameterization is
such a parameterization. It has no problems for rotations near the identity trans-
formation as it is the case for an axis and angle parameterization and there are
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Figure 5: The neighborhood structure of quaternion parameters gx, gy, dz in the
Hough table. Only Hough table cells in the sphere correspond to rotations. The
neighborhood is visualized as a cube and not as a sphere since in the Hough table
the neighborhood is given asa cube. (a) The usual case with trivial neighborhood
structure. (b) In the vicinity of the identity transformation there is also a trivial
neighborhood structure in contrast to the axis and angle parameterization. (c)
In the vicinity of rotations by an angle 1t about an arbitrary axis of rotation the
neighborhood structure is somewhat involved.

also no problems for other parameter configurations as it is the case for Euler an-
gle like parameterizations. Nevertheless the quaternion parameterization suffers
from a complicated neighborhood in the vicinity of rotations about an rotation
angleTtt

Another drawback of the quaternion parameterization for the Hough table ap-
proach to registration as described in [2] is the high memory consumption of a
Hough table using quaternion parameters. since only Hough table cells belonging
to the sphere in Fig. 5 correspond to rotations, the Hough table as the bounding
box of the parameter sphere needs nearly twice as much cells as are really needed
for rotations because the overhead can be estimated as

4 4 am 4
o7 - (s T)e- (i)
4
o £r3. (175)

Certainly, it is possible to avoid the memory overhead by some advanced rules
which map cells inside the sphere to the computer memory but this would com-
plicate the neighborhood of rotations even more and even for rotations that have a
trivial neighborhood structure with the approach described till now.
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Therefore in Subsec. 2.5 we proposed a compromise between the high mem-
ory consumption of a usual quaternion parameterization and the difficulty of a
sophisticated map from permitted Hough cells to the computer memory: in the
first iteration of the Hough table approach we suggest a quaternion parameteriza-
tion with the disadvantage of a high memory consumption, respectively a slower
convergence rate, since we have to choose a rougher Hough cell resolution be-
cause memory resources are a limiting factor. After detecting the correct Hough
peak by an additional analysis of the neighborhood of each Hough cell we change
for further iterations to an Euler angle like parameterization that has no parame-
terization problems in the vicinity of the detected Hough peak. Since the critical
parameterizationsin the Euler angle like parameterizations are far away from each
other (see appendix A), such a parameterization can always be found. In thisway
we have a ssmple Hough table structure over all iterations of the algorithm. Only
in thefirst iteration it is possible that the correct detection of the Hough peak can
become a little bit involved if the Hough peak corresponds to a rotation near 1t
about an arbitrary axis of rotation. But thereisno real problem in determining the
Hough peak even in this case.

A Relation between critical Euler parameter ranges

In Sec. 6 we claimed that the critical parameterizations in the Euler angle like
parameterizations are far away from each other. We want to give a proof for this
assertion.

In Subsec. 3.1 we demonstrated that the Euler angle parameters in the zyx-
Euler case are essentialy determined from a given rotation matrix as

B = arcsinrgy, (176)
a’ = arccos (#) : (177)
cos(arcsinrgy)
r22
= - . 178
Y arccos( cos(arcsmroz)> (178)

Substituting in these equations the matrix entriesr;; by the matrix entries as given
in the usual Euler angle parameterization (compare (1)) we get arelation between
the parametersin the zyx- and the zyz-Euler case,

B = arcsin(cosasing), (179)
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o — arccos| S°S° cosB.cosy— sinasiny 7 (180)
cos[arcsin(cosa sin)]
B B cosp
Y = accos ( cos|arcsin(cosa sinp)] > ' (181)

The critical range for B’ begins when it becomes difficult to determine a’ and Y
due to adenominator in the arccos function that becomes close to zero. Therefore
if

cos|arcsin(cosasinf)] ~ 0 (182

. : T 31
& arcsin(cosasinf) ~ > (183)
& cososinfBal,—-1 (184)
& cosasinB & |1 (185)

we run into problems with 3’. To become close to |1| with cosa sin3, o hasto be
near O or near T Let us assume the worst case scenario® o = 0 or o = Tt In this
case we get from (179) for the relation between B’ and B

B = +p. (186)

Thereforeif wetakefor the critical rangesof 3 theranges [0°,45°] and [180° — 45°,180°]
and if we take for the critical ranges of ' the ranges [—90°, —90° +45°] and

[90° — 45°,90°], then we can be surethat if B isin one of itscritical ranges, B’ will

be not.
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SWorst case scenario since it enlargesthe critical range of 8 at most.
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