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Abstract \/

AVAVAN

N/
One of the main objectives of scientific work is the \/\A
analysis of complex phenomena in order to revea M — W

the underlying structures and to explain them by
means of elementary rules which are easily under
stood. In this paper we study how the well-known
process of triangle mesh subdivision can be ex-
pressed in terms of the simplest mesh modification,rigure 1: Subdivision of a triangle mesh by 1-to-4
namely the vertex split. Although this basic Oper'splits.

ation is capable of reproducing all common subdi-

vision schemes if applied in the correct manner, we

focus on Butterfly subdivision only for the pUrpose . . e twice results in a triadic edge and a 1-t0-9

of perspicuity. Our observations lead to an ObVi0u7ace split, and thus this method is calle@ subdi-
representation of subdivision meshes as selective\yision '

refined progressive meshes, making them most ap-

plicable to view-dependent level-of-detail render- 1hese splitting operations per se concern the
ing. topology of the refined mesh only and additional

rules are required for determining the geometry.

This is usually done by specifying how to describe
1 Redated Work the vertices of the subdivided mesh as affine combi-

nations of the neighboring even vertices. One of
Subdivision of triangle meshes is usually based othe most popular of such averaging rules for the
a dyadic edge split where a new vertex is insertedl-to-4 split was given in [2] and is known &sit-
for every edge of the given triangle mesh and theierfly subdivision.
these new vertices are connected. As a consequenceln contrast toapproximating schemes like_oop
each face is split into four triangles, motivating thesubdivision [8] which give rules for placing both
term 1-to-4 split (cf. Fig. 1). The new vertices are the old and the new vertices, Butterfly subdivision
also known asodd vertices, whereas the old ver- is aninterpolating method and does not modify the
tices of the given mesh are often referred t@ah  positions of the even vertices. Repeatedly quadri-
vertices. secting an initial triangle mesh and setting the odd

Another variant of refining triangle meshes hasvertices according to the Butterfly masks in Fig. 2

been proposed recently in [6, 7]. It inserts new vergives a surface in the limit that i€'*-continuous
tices at the center of each triangle, connects theralmost everywhere except at extraordinary vertices
with the old vertices, and replaces each originalvith valencek = 3 andk > 7. A modified Butter-
edge by the one that connects the two new verfly scheme that ensures overélf -continuity was
tices of the two adjacent triangles. Performing thisproposed in [12].
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, Figure 4: Vertex split and edge collapse.
Interior Crease and boundary

Masks for odd vertices While subdivision introduces additional vertices

to a triangulationmesh decimation algorithms re-
move vertices. The approach taken in [3] reduces
the number of vertices by iteratively applyiedge

Besidesglobal or uniform subdivision, where the €0llapses as fundamental decimation steps. This
same splitting and averaging rules are used for affPération removes an edgav.: and the adjacent
triangles and vertices of a given mestaptivesub- ~ triangles by combining the vertices;vand : to
division permits to restrict the refinement to regions@ Single vertex y (cf. Fig. 4). Note that v and v
of interest [13]. In order to avoid T-vertices, which can be identified topologically although their geo-
would result in a discontinuous surface, additiona/Metric positions may differ. _
edges are introduced according to the rules of the The inverse operation of an edge collapse is
so-calledred-green triangulation [1, 11]. The usual called avertex Sp||F. It replaces the vertex;wvith
1-to-4 split is called ayreen split. Unrefined trian- Ver @nd \2 and inserts the edge:ive; as well
gles neighboring one and only one quadrisected trS the two facedi = A(Ve1,Vi,Ve2) and f, =
angle are split by aed 1-to-2 splitin order to fix the & (Ver, Vez, V). We refer to the collection of faces
T-vertex. If two neighbors of an unrefined triangle P&tWeenfno and . as thesupport of a vertex split
were subdivided, a green split will be applied to thisoPeration. _
triangle itself, causing a further red or green splitof !N Fig. 4 and throughout this paper we use the
the third neighboring triangle. In this way the differ- follpwmg symbols to b_nefly characte_rlze a vertex
ence between the subdivision levels of neighborin%pIIt operation. The split vertex {yv.,) is depicted
triangles is never greater than 1 (cf. Fig. 3). y [, the vertices defining the support of the split

operation (v, v,) are represented bf), andA is

used for the newly introduced vertex.£Y.

By applying a sequence of edge collapses to a
given triangle mesi/,

M o= M7 RS gt s 0
the complexity ofM is successively reduced up to
the simple base mesh/y. The sequence of edge

T-vertex collapses is usually chosen such that the intermedi-
/§< . /&ed /% . J@ geen  at€ meshes\I* are optimal approximations aff
with respect to some appearance metric.
The original meshiZ can later be reconstructed

Ired green by applying the vertex splits that correspond to the

Figure 2: Butterfly subdivision.

— red edge collapses to the base mesh in reverse order,

MO gty e

Figure 3: Two levels of usual adaptive subdivision:The base mesh/® and the vertex split operations
In order to avoid T-vertices additional edges are invsme, ..., vsplit,_, define a hierarchy of trian-

troduced according to the rules of red-green triangle meshes that is referred to apragressive mesh
gulation. (PM) [3].
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Figure 6: Generating an adaptive 1-to-4 subdivision split with three successive vertex split operations. The
support of all quarks contains exactly two different triangle indices (b-quarks).

Since a vertex split is a local operation many ofedges only, a global 1-to-4 subdivision step quadru-
the split operations are independent of each othgiles these quantities. Regarding the complexity
and can therefore be performed in a different ordeof such topological operators, the natural question
which allows to selectively refine regions of inter- arises whether the more complex ones can be ex-
est. The only restriction on the order in which thepressed in terms of the simpler ones. In the same
split operations can be carried out is that a vertexvay that physicists use elementary particles for de-
split can only be performed if the split vertex v scribing protons or neutrons, we will explain in this
and the triangles,o and f,,1 are already present section how to express complex topological refine-
in the current mesh. Moreover, in the context ofment operators such as 1-to-4 afi@ subdivision in
view dependent meshes intermediate edge collapsesms of the most elementary one, namely the ver-
need to be performed in order to adapt the mestex split. In order to stick to the analogy of physics
to changing viewing parameters [4]. This required5, 9] we call these elementary operaticsutdivi-
the selectively refined mesh to be unique, regardsion quarks and will find them to come in different
less of the sequence of vertex splits and edge coftavors (e.g. m-, b-, and t-quarks).
lapses that led to it. To satisfy this requirement,

. ) Let us consider the 1-to-4 split of a single trian-
both vertices v and v.» are stored as children of

- i gle first. Such a split requires to insert three new
the Spl,'t vgrtex v, whereas in a usual PM.the. ver- vertices, one for each edge, and we therefore expect
tex v is simply replaced by a. The duplication a4 g\ ,ch an operation can be represented by three
of the split vertex leads to a vertgx hlergrchy Ca”edsubdivision quarks. Fig. 6 confirms that we obtain
the vertex forest and each selectively refined meshi,jeqq the regular quadrisection of a triangle after
corresponds to aactive vertex front through this  ,ving three vertex split operations in the correct
hierarchy (cf. Fig. 5). manner. Note that the problem of T-vertices is au-
tomatically avoided since vertex splits always pre-

" /m serve the validity of a triangle mesh.
4 ¢ e
g %d vd % ¢ v
./\. active Ah

vertex front

Al — Alhc
Figure 5: The vertex forest with an active vertex AVA &m

front. ©

tri-quark mono-quark tri-quark

2 Topology of Subdivision Quarks
tri-quark fri-quark mono-quark

As we have seen in the previous section there are oo

several ways of refining the topology of a triangle

mesh which differ by the sort and the extent of mod-Figure 7: It is also possible to reproduce a 1-to-4

ification they apply to the mesh. While the ver- split via quarks whose support contains only one or

tex split adds one vertex, two triangles, and thre@ven three triangle indices (m-quarks and t-quarks).
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Figure 8: In order to reproducg3 subdivision we
need m-quarks and/or t-quarks.

()

A deeper analysis shows that there are many
ways of representing a 1-to-4 split by three subdivi- A
sion quarks (cf. Fig. 7). In order to be able to man-

age this diversity we categorize subdivision quarks

in the following way. Suppose we provide each tri-

angle in the given mesh with a unique index and let

the new faced; and f. inherit the index fromf,,o —
and f,,1 respectively whenever a vertex split is per-

formed (cf. Fig. 4). Then each subdivision quark

can be classified by the numbérof different tri- ) ) ] )
angle indices of all triangles in the support of thisFigure 9: All possible configurations (except for

\

P S P
P> B> D

v

operation: symmetry) of a preon (one half of a b-quark). Any
b-quark is a combination of one of the above preons
d | quark type with a mirrored version of another preon such that
1 | mono-quark (m-quark) the split vertexd and the new verteX\ coincide.
2 bi-quark (b-quark)
3

tri-quark (t-quark) If a triangle is refined by a preon for the first time

the configuration will always be the one shown in
Fig. 9a. In case a preon is about to refine a tri-
In this work we restrict ourselves to the analysis ofangle that has already been split once, the three
b-quarks since they are sufficient for representing leonfigurations in Fig. 9b can occur. Whenever a
to-4 subdivision. Note thay/3 subdivision cannot triangle is split for the third time, this last ver-
be described by b-quarks solely (cf. Fig. 8). tex split will not necessarily result in a regular
Let T} andT, be the sets of those triangles in quadrisection of the triangle. Only the topmost
the support of a b-quark that have the same triarpreon in Fig. 9c¢ leads to the desired configura-
gle index. We can then divide any b-quark into twotion, the other two preons are therefongalid. We
preons [10], one operating off}, the other oril,.  have to exclude all b-quarks that contain an invalid
SinceT; as well asT» naturally correspond to one preon if we want to reproduce dyadic subdivision
of the coarse triangles in the initial triangle mesh weconnectivity.
can further view each preon as to successively refin- During the quark subdivision refinement process
ing a coarse triangle until it has been quadrisectedve may encounter the situation displayed in Fig. 10,
Fig. 9 shows all possible configurations of a preon.where the remaining unsplit edge can only be re-
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Figure 11: Global 1-to-4 subdivision of a triangle mesh by successive b-quark subdivision steps. Note tha
steps 5,7, 8,9, 11, 13, and 14 were forced by the regularity rule.

a criterion for the order in which the b-quarks are to
be carried out we could take the area of the two tri-
—> angles adjacent to the edge that is going to be split
by the quark subdivision step and perform those
vertex splits first for which this value is largest.
However, other criteria, view dependent ones, for
example, are possible.
So far we have only considered quark subdivi-
sion that leads to one level of 1-to-4 subdivision.
If we want to adaptively refine parts of the triangle
mesh up to further subdivision levels we may have
to force some quark subdivision steps in the neigh-
. . borhood of the split vertex similarly to the rules of
Figure 10: Regardless of which b-quark we choosg 5 ive red-green triangulations. In principle, the
to create the new vertex in the center, the result ijrerion is the same, namely that the difference be-
nota valid subdivision structure. Therefore we havg een neighboring subdivision levels should never
to ensure this configuration never to occur. be greater than 1. However, these rules will be dis-
cussed in detail in the next section.

<

—

-
R

fined by a forbidden b-quark and there is no way of

obtaining regular subdivision connectivity through3 ~ Geometry of Subdivision Quarks

quark subdivision. In order to avoid these cases, we

always force the third split of a triangle to be per-In the previous section we have described how each

formed immediately after the second one and take gubdivision quark adds one vertex to the triangle

valid b-quark for this purpose. Thiggularity rule  mesh, concerning théopology of the operation.

is similar to the rules of red-green triangulations inNow we want to discuss how to determine te

adaptive subdivision [1, 11]. ometry, in other words the position of this new ver-
Respecting the regularity rule we can apply suctex. In addition, in the context of a selectively refin-

cessive b-quark subdivision steps to a given trianglable mesh, a new vertex is introduced for the split

mesh inany order and will always end up with a vertex, too. We refer to this new vertex as #ven

regular 1-to-4 subdivision structure (cf. Fig. 11). Aschild of the split vertex, whereas the other newly
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struct Vertex {
ListNode<Vertex> active; /1 list stinging active vertices

Point point;

Vertex* parent; /1 0 if vertex is in Mo

Vertex* child[2]; // child[0] = ‘even’ vertex; child[1] = ‘odd’ vertex
Face* fl; /I fr = fl->faces.next

Face* fn[2]; /I define split operation

int splitOpIndex; // =subdivision level (<0) for subdivision vertices

g

D Butterfly mask from the view of A swetraces

ListNode<Face> faces; // list stringing all faces
ListNode<Face> active; // list stinging all active faces
Vertex* vertices[3]; /I ordered counter-clockwise
Face* neighbors[3]; // neighbors[i] across from vertices]i]

Figure 12: After a split in the Butterfly mask of  »
an odd vertexA has been performed this mask “Fre o !
T* prev;

is no longer given by the three neighboring trian-
gles above and the three ones below the split edgevct s (

i std::list<Vertex*> base_vertices;

(cf. Fig. 2). i AN ot
;\?Nodedace‘» active_faces;  // head of list
introduced vertex is called thadd one. Of course
we also have to assign a new position to the eve
child in this setting. But for the sake of simplic-
ity we will focus on reproducing Butterfly subdivi-
sion [2], an interpolating subdivision scheme where
the split vertex does not change its position. In thigefinable progressive mesh with infinite refinement
way the positions of even vertices are always thecf. Fig. 13).
same as the positions of their parents. But note The data structure of a vertex includes an at-
that in general we are also able to reproduce aftibute, thesplitOplndex member, which we will
approximating subdivision scheme like the one byjtilize for our purposes. For non-subdivision ver-
Loop [8]. tices it contains the index of the split operation

Using Butterfly subdivision, the position of the that splits this vertex. If there is no split opera-
odd child is determined by the mask in Fig. 2. How-tion defined for a certain vertex we indicate this fact
ever, there is a problem in accessing the vertices dfy setting itssplitOplndex member to—3. Also
the subdivision mask due to our central requiremenfor vertices created by subdivision tisplitOpln-
of being able to apply subdivision splits in an ar-dex member is negative and codes how often a ver-
bitrary order and in an incremental way. The re-tex was split during the current 1-to-4 subdivision
gion that is to be adaptively subdivided should nostep.
be known a priori. This means that it should be al- In Fig. 14 we illustrate how thesplitOplndex
lowed to begin subdivision in one region and pro-member is set during subdivision. The even child
ceed somewhere else. Also when two subdividedchild[0]) inherits its parent'splitOplndex, decre-
regions join the result should be consistent with thenented by one, whereas tlsplitOplndex of the
usual Butterfly subdivision. In this way our subdi- odd child (child[1]) is initialized by—1, marking
vision quarks are as independent of each other asas a vertex that is forbidden to be further split for
possible. The problem of accessing the vertices ahe time being. We also mark even vertices whose
the subdivision mask under these circumstances iseighborhood has been entirely subdivided in a spe-
illustrated in Fig. 12. cial way by setting theisplitOplndex member to

After a vertex split has been performed that af-—2. If we want to split such vertices we have to pro-
fected a triangle inside the Butterfly mask, thisceed to the next 1-to-4 subdivision level. This suc-
mask is no longer given by the three neighboringcessive refinement is discussed later in this section.
triangles above and the three ones below the splitiote that since in the next 1-to-4 subdivision level
edge (cf. Fig. 2). If we want to access the verticesalso the odd children belong per definition to the
of the original Butterfly mask we have to analyzeoriginal mesh, being aodd vertex in the usual sub-
the current subdivision configuration. In order todivision sense is not determined by being child[1]
explain how to perform such an analysis we takeof its parent but by having splitOplndex member
a look at the C++ data structure of our selectivelyof —1 instead.

igure 13: The principal C++ data structure of our
selectively refinable progressive mesh with infinite
refinement.
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V2
if( v.=+splitOpindex == -1)
{
lf[ v.~splitOpindex == -1)

A A AN XA

At TACA

splitOplndex = splitOplndex =-1 else
parent-»splitOplndex-1 {

if(v.-»splifOpIndex == -1)

Figure 14: When a split operation is performed two é - ﬁv
new verticesl and A, are introduced in the ver-

tex forest as the children of the split vertex The olse '

even child (child[Q]) inherits its parentsplitOpln- { \

dex, decremented by one, whereas $hktOplndex } A

of the odd child (child[1]) is initialized by-1. As v

long as thesplitOplndex member of a vertex is-1

the vertex is not allowed to be split. Figure 15: Given an arbitrary triangle in which v
is to be split we can restrict the possible subdivi-
sion configurations with the help of tsplitOpln-

Analysis of the local subdivision configuration 4o member of the vertices\and .

In Fig. 15 we demonstrate how theplitOplndex
member of a vertex helps analyzing the possible
subdivision configurations when an arbitrary fgce nal subdivision mask but only their even children
with a vertex v, that is either a vertex of the orig- in the active vertex front. However, since we use
inal mesh or an even child, is given. Dependeng@n interpolating subdivision scheme, the positions
on whether the other two vertices in the face are®f the even children coincide with the positions of
odd children or not, i.e. whether thegolitOplndex ~ the mask vertices. In an approximating subdivision
member is—1 or not, we know whether the coarse scheme we would have to access the original mask
triangle has been split twice, once, or never. We canertices. Again, this is possible by using the infor-
further determine the exact subdivision configuramation stored in theplitOplndex member but will
tion if we consider the face parameters of the parhot be further detailed here.
ents of the odd child(ren). Fig. 16 demonstrates the For the analysis of the subdivision configurations
basic principle. so far it was important that the odd children were
Since each possible split operation requires th&0t split again. As can be seen in Fig. 15 we rely on
given facef to be a certain face of the parent's faceidentifying odd children by aplitOplndex member
members that encode its split operation, it suffice®f —1 which restricts the number of possible sub-
to comparef with these face parameters to exactlydivision configurations. This has to be taken into
determine the subdivision configuration. Knowingaccount for successive refinement when proceeding
the subdivision configuration it is then straightfor-t0 the next 1-to-4 subdivision level.
ward to get the vertices of the Butterfly mask, since
we exactly know in which faces they lie and which Successive refinement Let us consider the situ-
faces are opposite to these vertices. ation in Fig. 17 where the odd vertdX in (a)
The analysis of the subdivision configuration deshall be split. At first the region around this ver-
scribed so far does not necessarily access the vaex is subdivided by forced splits of even vertices
tices in the vertex forest that belong to the origi-in the neighborhood (b). This step is quite similar
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\ " it represents the less complex triangulation shown

A .

e AN )
V,A arises from _or ’ Similar rules have to be observed if we want to

v ~ « splitan even vertex once its entire neighborhood has

AR\ been quadrisected (cf. Fig. 18). We have to ensure

that no future split operation needs access to the ver-

Vi
Vo ’ Vo
A = tices in the dark grey area in (b). Again, this can be
Vi
Q

Vo
Aﬁ arises from 4 vi Vi Ve guaranteed by forcing splits of even vertices that in-
— W ‘ A troduce the vertices represented by black dots in (b).
A. - We further indicate that the desired vertex is now al-
Vi Vv lowed to be split by decrementing igplitOplndex
Vi = viorone ofifs parents member from—2 (“forbidden”) to —3. As illus-
= ofter arbifrary many spifts of vi trated in (c) the modified region is even larger than
in the case of an odd vertex split. However, after
if(vi—parent —+fro ==f | | vi—parent—fi== ) moving the vertex front (d) the same result as in
Vo Fig. 17 d is obtained.
} Vi
oo, v 4 Conclusion
} Ajlv In this paper we have discussed how to express

triangle mesh subdivision in terms of the simplest
mesh modification, namely the vertex split. This
Fnables us to combine the concept of subdivision
with the framework of selectively refined progres-
sive meshes, thus making subdivided meshes appli-
cable to view-dependent level-of-detail rendering.
We have explained in detail how the topology as

o usual red-green triangulation and already Quali el as the geometry of the adaptive Butterfly sub-

a_nt_ees the difference between neighboring S’.u_bdﬁivision scheme can be reproduced by a sequence of
vision levels to be less or equal to 1. In addition

have t that th bdivisi K of adequate vertex splits. In future work we are going
we have 1o ensure that the subdivision mask otany, qiang our investigations to the reproduction of
split operation that might be carried out later ONGther subdivision schemes like Loop avf@ subdi-
the coarser level does not intersect with the dar

grey area in (b) which will be subdivided when ' > °"
proceeding to the next subdivision level. Other-
wise the method of analyzing the subdivision conAcknowledgment

figuration that we presented in the last paragraph
cannot be applied. Therefore we have to ensur&NiS Work has been sponsored by the SFB 603

that the odd vertices marked as black dots in (byModel Based Analysis and Visualization of Com-
have been introduced, giving the result shown irP/ex Scenes and Sensor Data” of the DFG (German
(c). After all these splits have been forced, the acResearch Foundation).

tual split of 0 can be performed without any prob-
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